Feature and model space speaker adaptati
نویسنده
چکیده
Full covariance models can give better results for speech recognition than diagonal models, yet they introduce complications for standard speaker adaptation techniques such as MLLR and fMLLR. Here we introduce efficient update methods to train adaptation matrices for the full covariance case. We also experiment with a simplified technique in which we pretend that the full covariance Gaussians are diagonal and obtain adaptation matrices under that assumption. We show that this approximate method works almost as well as the exact method.
منابع مشابه
Application of LDA to speaker recognition
The speaker recognition task falls under the general problem of pattern classification. Speaker recognition as a pattern classification problem, its ultimate objective is design of a system that classifies the vector of features in different classes by partitioning the feature space into optimal speaker discriminative space. Linear Discriminant Analysis (LDA) is a feature extraction method that...
متن کاملOn Feature Selection for Speaker Verification
This paper describes an HMM based speaker verification system, which verifies speakers in their own specific feature space. This ‘individual’ feature space is determined by a Dynamic Programming (DP) feature selection algorithm. A suitable criterion, correlated with Equal Error Rate (EER) was developed and is used for this feature selection algorithm. The algorithm was evaluated on a text-depen...
متن کاملSpeaker Verification with D Adaptati
This paper presents methods for adapting models in a data fusion-based speaker verification system. The models that are used in the data fusion system are the neural tree network (NTN), dynamic time warping (DTW), and hidden Markov model (HMM). The models provide information based on discriminant information, distortion measurements, and probabilistic evaluation, respectively. The parameters of...
متن کاملFactored adaptation using a combination of feature-space and model-space transforms
Acoustic model adaptation can mitigate the degradation in recognition accuracy caused by speaker or environment mismatch. While there are many methods for speaker or environment adaptation, far less attention has been focused on methods that compensate for both simultaneously. We recently proposed an algorithm called factored adaptation which jointly estimates speaker and environment transforms...
متن کاملIntegrated Feature Normalization and Enhancement for Robust Speaker Recognition Using Acoustic
State-of-the-art factor analysis based channel compensation methods for speaker recognition are based on the assumption that speaker/utterance dependent Gaussian Mixture Model (GMM) mean super-vectors can be constrained to lie in a lower dimensional subspace, which does not consider the fact that conventional acoustic features may also be constrained in a similar way in the feature space. In th...
متن کامل